Abstract

A new experimental technique has been developed to investigate the onset of fracture in metals at low and intermediate stress triaxialities. The gage section of a flat specimen has been designed such that cracks are most likely to initiate within the specimen center, remote from the specimen boundaries. Along with the specimen, a biaxial testing device has been built to apply a well-defined displacement field to the specimen shoulders. The stress state within the specimen is adjusted by changing the biaxial loading angle. Using this new experimental technique, the crack initiation in metals can be studied experimentally for stress triaxialities ranging from 0.0 to 0.6. The stress and strain fields within the specimen gage section are determined from finite element analysis. The reliability of the computational model of the test set-up has been verified by comparing the simulation results with laser speckle-interferometric displacement measurements during testing. Sample experiments have been performed on the Al-7Si-Mg gravity die casting alloy. A three-step hybrid experimental–numerical calibration procedure has been proposed and applied to determine a phenomenological crack formation criterion for the Al-7Si-Mg alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.