Abstract

The present paper is concerned with multi-axial ductile fracture experiments on sheet metals. Different stress-states are achieved within a flat specimen by applying different combinations of normal and transverse loads to the specimen boundaries. The specimen geometry is optimized such that fracture initiates remote from the free specimen boundaries. Fracture experiments are carried out on TRIP780 steel for four different loading conditions, varying from pure shear to transverse plane strain tension. Hybrid experimental–numerical analyses are performed to determine the stress and strain fields within the specimen gage section. The results show that strain localization cannot be avoided prior to the onset of fracture. Through-thickness necking prevails under tension-dominated loading while the deformation localizes along a band crossing the entire gage section under shear-dominated loading. Both experimental and simulation results demonstrate that the proposed fracture testing method is very sensitive to imperfections in the specimen machining. The loading paths to fracture are determined in terms of stress triaxiality, Lode angle parameter and equivalent plastic strain. The experimental data indicates that the relationship between the stress triaxiality and the equivalent plastic strain at the onset of ductile fracture is not unique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.