Abstract

DNA-based quantification methods such as real-time TaqMan PCR allow a rapid and highly sensitive species-specific quantification of isolated fungal DNA material, but most quantification systems are only able to measure relative amounts of biomass or biomass changes during different treatments. In this experiment, an already established DNA quantification system for the ectomycorrhizal fungus Piloderma croceum, based on the ITS region of ribosomal DNA, was calibrated to absolute biomass to obtain a direct correlation between mycelial biomass and isolated ITS copies. Thin layers of sterile mycelia were cultured on slides. The mycelial biomass was calculated from measurements of the total hyphal length using image analysis, followed by determination of the mycelial volume, and multiplied by the specific weight of hyphae obtained from literature data. Using the very same mycelium, the number of ITS copies was quantified by TaqMan PCR. The mean value of 1047 (+/- 185) copies per mm hypha results in possible data for a direct conversion: one billion (10 (9)) ITS copies corresponded to 0.79 mg hyphal dry weight. For the ribosomal ITS multi-copy genes, the number of ITS copies could be calculated to approx. 152 (+/- 26) copies per dikaryotic cell. These conversion data now allow determination of the mycelial biomass of Piloderma croceum using real-time TaqMan PCR, a prerequisite for competition experiments with Piloderma croceum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call