Abstract

We present a calibration flow for a large-scale floating-gate (FG) system-on-chip field programmable analog array. We focus on characterizing the FG programming infrastructure and hot-electron injection parameters, MOSFET parameters using the EKV model, and calibrating digital-analog converters and analog-digital converters. In addition, threshold voltage mismatches on FG devices due to their indirect structure are characterized using on-chip measurement techniques. The calibration results in enabling a digital approach, where a design can be programmed without having to deal with the local and global mismatches, on a reconfigurable analog system. This paper shows the results of a compiled nonlinear classifier block comprising a vector-matrix-multiplier and a winner-takes-all on three different calibrated chips.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call