Abstract

A combined Computational Fluid Dynamics (CFD) and experimental approach is presented to determine (calibrate) the external convective heat transfer coefficients (h) around a partially-filled water tank cooled in a climactic chamber. A CFD analysis that includes natural convection in both phases (water and air) was performed using a 2D-axisymmetric tank model with three prescribed average heat transfer coefficients for the top, side and bottom walls of the tank. The commercial CFD code ANSYS-Fluent™, along with User-Defined Functions (UDFs), were utilized to compute and extract temperature vs. time curves at five different thermocouple locations within the tank. The prescribed h values were then altered to match experimentally obtained temperature-time data at the same locations. The calibration was deemed successful when results from the simulations exhibited match with experimental data within ±2°C for all thermocouples. The calibrated h values were finally used in full-scale 3D simulations and compared to the experimental data to test their accuracy. Predicted 3D results were found to agree with experimental results within the error of the calibration, thereby lending credibility to the overall approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call