Abstract

Equivalent viscous damping plays a central role in displacement-based design procedures. In this paper, approaches for estimating the equivalent viscous damping of RC frame buildings are proposed. At first, the analytical formulation of Blandon and Priestley was analysed, and then a calibration of the coefficients of this formulation was performed. Compared with the work of Blandon and Priestley, a larger set of synthetic accelerograms, related to different types of soil and different intensities, and a wider range of the effective periods were considered. In particular, two different sets of parameters are proposed: the first is usable in the case of spectra obtained numerically (approach 1), and the second is usable in the case of code-based spectra and damping modification factor (approach 2). To test the performed calibration and to compare the considered formulations (i.e., the proposed and literature equations), the direct displacement-based design procedure has been applied to three case studies of reinforced concrete frame structures, and then pushover and nonlinear time-history analyses have been performed. The results show that the use of the calibrated parameters (for both the considered approaches) has determined more conservative results, in terms of design base shear and maximum drift from NLTH. Moreover, the average displacement profiles and the inter-storey drifts obtained from time-history analyses for the frames designed with the calibrated parameters match better the design profile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call