Abstract

The reliability-based calibration procedures were applied to develop load and resistance factors for the Ontario Highway Bridge Design Code (1979, 1983, and 1991) and recently the Canadian Highway Bridges Design Code (2000). However, the load components for buried structures were not considered. The development of a statistical model for earth pressure requires a special approach. Therefore, this paper deals with the reliability-based calibration of the design code for buried (cut-and-cover) structures. A typical running structure consists of reinforced concrete walls forming a rectangular box section, while an underground station may have a one- to six-cell box. The major load components include earth pressure, water pressure and weight of the concrete. Other load components such as live load are relatively small. Statistical parameters are derived for representative structures and structural systems. The correlation between load components is estimated based on the available field data. Structural performance is measured in terms of the reliability index. Reliability indices are calculated for a representative spectrum of running structures and stations. In general, the reliability indices for existing buried structures are higher than those for bridges or buildings. The target reliability index has been selected on the basis of calculated reliability indices, comparison with other structures, and cost analysis (consequences of failure). The optimum load and resistance factors are calculated and recommended for the design code to achieve a uniform safety level.Key words: buried structure, code calibration, load models, reinforced concrete, reliability analysis, resistance models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call