Abstract

The threshold voltage characteristics of a buried channel silicon-on-insulator MOSFET is examined in solutions of varying acidity. Experiments utilizing an integrated micro-fluidic channel exhibit a variation in threshold voltage that appears approximately linear with pH in the range from pH 4 to pH 7, with a sensitivity of ∼1 V per pH unit. Charge configuration changes in the vicinity of the MOSFET inversion layer due to protonation/deprotonation of the device surface is proposed as an explanation for the observed shifts in threshold voltage. When the pH range is expanded we observe a non-linear relationship bet- ween pH and the threshold voltage of the device, this behavior is explained in terms of deprotonation of the different species of the native oxide surface, Numerical simulations of the MOSFET demonstrate that the threshold voltage sensitivity corresponds to an additional surface positive fixed charge density of ∼ 1 × 1010 cm–2 for each pH unit. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.