Abstract
Electrical resistance strain gauges are widely used in asymmetric structures for measurement and monitoring, but their thermal output in changing temperature environments has a significant impact on the measurement results. Since thermal output is related to the coefficient of thermal expansion of the strain gauge’s sensitive grating material and the measured object, the temperature self-compensation technique of strain gauges fails to eliminate the additional strain caused by temperature because it cannot match the coefficient of thermal expansion of various measured objects. To address this problem, in this study, the principle of the thermal output of electrical resistance strain gauges was analyzed, a calibration experiment for thermal output in the case of a mismatch between the coefficient of linear expansion of the measured object and the strain gauge grating material was conducted, and the mechanism for temperature influence on thermal output was revealed. A method was proposed to obtain the thermal output curves for different materials by using thermostats with dual temperatures to conduct temperature calibration experiments. A linear regression method was used to obtain a linear formula for the thermal output corresponding to each temperature. The thermal output conversion relationship was derived for materials with different coefficients of linear expansion. An in situ temperature compensation technique for electrical resistance strain gauges that separates the measured strain into thermal and mechanical strains was proposed. The results showed that the thermal output curve for the measured object can be calibrated in advance and then deducted from the measured strain, thus reducing the influence of temperature-induced additional strain on the mechanical strain. In addition, a new method was provided for the calculation of the thermal output among materials with similar coefficients of linear expansion, providing a reference for the health monitoring of asymmetric structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.