Abstract
Summary We consider the problem of transforming values from a flow time series observed over varying time intervals into values that cover calendar intervals such as day, week, month, quarter and year. We call this process calendarization. We propose simple methods based on interpolating the cumulated flows with natural spline interpolations. Alternatively, we provide state space models with missing observations to obtain smoothed values of the level of the cumulated flows. The state space models are the underlying statistical models behind Denton's benchmarking methods modified by Cholette. We therefore provide efficient alternative methods for benchmarking and temporal distribution. We show the theoretical properties of our methods, compare them and illustrate them with various examples.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series C: Applied Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.