Abstract

The increased incidence of obesity, which become a global health problem, requires more functional food products with minor side and excellent effects. Calebin A (CbA) is a non-curcuminoid compound, which is reported to be an effective treatment for lipid metabolism and thermogenesis. However, its ability and mechanism of action in improving obesity-associated hyperglycemia remain unclear. This study was designed to explore the effect and mechanism of CbA in hyperglycemia via improvement of inflammation and glucose metabolism in the adipose tissue and liver in high-fat diet (HFD)-fed mice. After 10 weeks fed HFD, obese mice supplemented with CbA (25 and 100 mg/kg) for another 10 weeks showed a remarkable reducing adiposity and blood glucose. CbA modulated M1/M2 macrophage polarization, ameliorated inflammatory cytokines, and restored adiponectin as well as Glut 4 expression in the adipose tissue. In the in vitro study, CbA attenuated pro-inflammatory markers while upregulated anti-inflammatory IL-10 in LPS + IFNγ-generated M1 phenotype macrophages. In the liver, CbA attenuated steatosis, inflammatory infiltration, and protein levels of inflammatory TNF-α and IL-6. Moreover, CbA markedly upregulated Adiponectin receptor 1, AMPK, and insulin downstream Akt signaling to improve glycogen content and increase Glut2 protein. These findings indicated that CbA may be a novel therapeutic approach to treat obesity and hyperglycemia phenotype targeting on adipose inflammation and hepatic insulin signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call