Abstract
We consider a nonhomogeneous elliptic problem with an irregular obstacle involving a discontinuous nonlinearity over an irregular domain in divergence form of p-Laplacian type, to establish the global Calderón–Zygmund estimate by proving that the gradient of the weak solution is as integrable as both the gradient of the obstacle and the nonhomogeneous term under the BMO smallness of the nonlinearity and sufficient flatness of the boundary in the Reifenberg sense.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.