Abstract

We study a nonlinear elliptic problem with an irregular obstacle in a bounded nonsmooth domain when the nonlinearity is merely asymptotically regular. We find an optimal regularity requirement on the associated nonlinearity and a minimal geometric condition on the boundary to ensure a global Calderón–Zygmund estimate for such an asymptotically regular obstacle problem. We assume that the associated nonlinearity has a small BMO and the boundary is sufficiently flat in the Reifenberg sense.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.