Abstract

The observations of quantum oscillations frequencies in overdoped cuprates were in agreement with a charge density contained in a cylindrical Fermi surface but the measured frequencies of underdoped compounds were much smaller than expected. This was attributed to a topological transition into small pockets of Fermi surface associated with the existence of charge density waves. On the other hand, spectroscopic measurements suggested that the large two-dimensional Fermi surface changes continuously into a set of four disconnected arcs. Here we take into account the effect of the pseudogap that limits the available k-space area where the Landau levels are developed on the Luttinger theorem and obtain the correct total carrier densities. The calculations show how the disconnected arcs evolve into a closed Fermi surface reconciling the experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.