Abstract

A quantum formalism and classical treatment have been used for electrons and nuclei, respectively, in a hybrid method in order to study the dynamics of electronically ground-state ionic xenon dimer, Xe2+, in its parent gas. A semiempirical Diatomics In Molecules approach has been used to model the effective electronic Hamiltonian with different sets of input diatomic potentials (ionic and neutral). Non-reactive scattering and collision induced dissociation cross-sections have first been calculated and then injected in a Monte Carlo code for the simulations of the transport coefficients and dissociation rate constant calculated at ambient temperature and atmospheric pressure. Selected transport coefficients, such as Xe2+ mobility for which experimental measurements are available, have been compared to experimental results while transversal and longitudinal diffusion coefficients are compared to pseudo-experimental data obtained from inverse method calculations. Investigation of rotational-vibrational effects and the influence of different sets of ionic and neutral diatomic potentials have been studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call