Abstract
Mill's ratio is expressed as a convergent series in orthogonal polynomials. Truncation of the series provides an approximation for the complemented normal distribution function $Q(x)$, with its maximum error at a finite value of $x$. The analogous approximation for $xQ(x)$ is used to obtain a new method of calculating the bivariate normal probability function.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have