Abstract
In this study, an interactive Ising model having the nearest and prolonged next-nearest neighbors defined on a Cayley tree is considered. Inspired by the results obtained for the one-dimensional Ising model, we will construct the partition function and then calculate the free energy of the Ising model having the prolonged next nearest and nearest neighbor interactions and external field on a two-order Cayley tree using the self-similarity of the semi-infinite Cayley tree. The phase transition problem for the Ising system is investigated under the given conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.