Abstract

A mathematical model was developed to allow for the prediction of critical currents in Bi(2223)/Ag-sheathed tapes that consist of two groups of filaments, having crystalline texture ( c-axis) predominantly in two directions orthogonal to each other and to the length of the conductor (filaments oriented parallel and perpendicular to the tape surface). Using the theory presented, it is possible to estimate the upper limit of critical currents in the tapes prepared with a two-axial rolling technique. Magnetic field and angular dependencies of critical currents were obtained at 77 K measuring tapes with various proportional representations of filaments oriented in both preferred directions, i.e., the parallel and perpendicular directions. The results of calculation indicate that the anisotropy in the I c( B) characteristic should be reduced considerably using the two-axial rolling. Unfortunately, the effect of anisotropy reduction is accompanied by simultaneous decrease in the current-carrying capacity of the tapes. The data obtained for short tape samples were utilised to estimate the critical currents of the individual turns of a small cylindrical magnet, assembled of eight pancake coils. It is shown that only a slight increase in the critical current of the magnet can be expected if the winding should be made of the tape with reduced anisotropy in the I c( B) characteristic. The factors that limit the increase of the magnet critical current are discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.