Abstract

We calculate the mobility of the two-dimensional electron gas as realized in (110) AlAs quantum wells at zero temperature. In this structure the mass is strongly anisotropic which gives rise to an anisotropic mobility. By using a theoretical approach developed by Tokura [Phys. Rev. B 58, 7151 (1998)] we numerically calculate the anisotropic mobility. We study impurity scattering in quantum wells having an ellipsoidal Fermi surface. We find that increasing the electron density and/or the well width results in reduction of the anisotropy of the mobility while the anisotropy in the scattering time is increased. A strong dependence of the mobility anisotropy on the impurity position is predicted. Excellent agreement with a recently published experimental result is found under the assumption that impurities are located at the edge of the quantum well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.