Abstract

Estimation of decay gamma distribution in a reactor core is essential for safely conducting various works after reactor shutdown such as periodic maintenance, shuffling fuel, removing spent fuel at the end of cycle, etc. Because of the dependency on the complex operating history of the reactor, attempting to calculate the decay gamma rays distribution in the core remains a challenge. This study shows a method to calculate the shutdown gamma distribution in the HTTR core by coupling a Monte-Carlo transport calculation code MCNP6 and an activation code ORIGEN2 to take advantage of spatial dependence and transport abilities of MCNP6 and the detailed fission products tracking during burnup and cooling of ORIGEN2. As result, the three-dimensional shutdown gamma distribution in the HTTR core for different cooling times and spatial locations could be obtained accurately.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call