Abstract

Abstract In this paper, we use the fuzzy neural network (FNN) to develop a formula for designing the proportional-integral-derivative (PID) controller. This PID controller satisfies the criteria of minimum integrated absolute error (IAE) and maximum of sensitivity (M s). The FNN system is used to identify the relationship between plant model and controller parameters based on IAE and M s. To derive the tuning rule, the dominant pole assignment method is applied to simplify our optimization processes. Therefore, the FNN system is used to automatically tune the PID controller for different system parameters so that neither theoretical methods nor numerical methods need be used. Moreover, the FNN-based formula can modify the controller to meet our specification when the system model changes. A simulation result for applying to the motor position control problem is given to demonstrate the effectiveness of our approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.