Abstract

Abstract Diamond films were deposited on a p-type Si substrate by a hot-filament chemical vapor deposition method. We observed intrinsic stress of the film by creep deformation of the Si substrate, and deduced intrinsic residual stresses of films using the power-law creep equation. Thermal strain and creep strain in the Si substrate were subtracted from the total ex situ measured strain. Thermal strain was removed by the numerical method, and creep strains in the substrate were examined by measuring the curvature of Si substrates which had been removed from the diamond films by the electron cyclotron resonance etching process using oxygen plasma. The results showed that creep deformation of the Si substrates must be considered when residual stresses are measured by the curvature method. This is especially true in cases where the film was thick, or when temperature or stress conditions were high. From this study, we propose a new approach to measuring intrinsic stress from the creep deformation of substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.