Abstract

In Low Energy Ion Scattering (LEIS), Auger-neutralization is an omnipresent charge exchange mechanism, especially when noble gas ions are used as projectiles, with a primary energy below the threshold energy, E th, for collision induced charge exchange processes (neutralization and reionization). Recent experiments revealed a significant dependence of the ion survival probability, P +, on the crystal plane, when He + ions are scattered from a metal surface. This is in contrast to the fact, that the neutralization probability in LEIS is usually assumed to be independent of the chemical environment of the collision partner (absence of matrix effects). In order to investigate this crystal effect, an existent theory on Auger-neutralization (based on a Linear Combination of Atomic Orbitals) is adapted to the LEIS geometry. With this model, Auger-neutralization rates are calculated for a Ag(1 1 0) surface. Trajectories for He particles scattered from this surface into different azimuth directions are obtained by means of Molecular Dynamics simulations. Subsequently, the ion survival probability is calculated and compared to measurements. Good agreement is obtained which gives confidence in the applicability of this model in the LEIS regime. Moreover, it was possible to obtain detailed information on the properties of the neutralization process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call