Abstract

In radiotherapy with photon beams, the use of dynamic wedges, which are obtained by the movement of one of the jaws, offers an increasing flexibility relative to the traditional use of metal wedges. But it is a disadvantage for the measurement of absorbed dose distributions, because the absorbed dose at each measurement point can only be obtained after a complete movement of the jaw. Consequently, for radiotherapy planning, an algorithm should be available that does not require measurements for any specific dynamically wedged beam, but is based on only a modest number of measurements. In this paper, an algorithm for the calculation of the dose distribution from dynamic wedges is described. This algorithm uses the convolution of pencil beam kernels with a non-uniform field function. These pencil beam kernels are derived from empirical data resulting from measurements of the open beam only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.