Abstract

The purpose of this study is to analyze the characteristics of dynamic wedges (DW) and to compare DW to physical wedges (PW) in terms of their differences in affecting beam spectra, energy fluence, angular distribution, contaminated electrons, and dose distributions. The EGS4/BEAM Monte Carlo codes were used to simulate the exact geometry of a 6 MV beam and to calculate 3-D dose distributions in phantom. The DW was simulated in accordance with the segmented treatment tables (STT). The percentage depth dose curves and beam profiles for PW, DW, and open fields were measured and used to verify the Monte Carlo simulations. The Monte Carlo results were found to agree within 2% with the measurements performed using film and ionizing chambers in a water phantom. The present EGS4 calculation reveals that the effects of a DW on beam spectral and angular distributions, as well as electron contamination, are much less significant than those for a PW. For the 6 MV photon beam, a 45 degrees PW can result in a 30% increase in mean photon energy due to the effect of beam hardening. It can also introduce a 5% dose reduction in the build-up region due to the reduction of contaminated electrons by the PW. Neither this mean-energy increase nor such dose reduction is found for a DW. Compared to a DW, a PW alters the photon-beam spectrum significantly. The dosimetric differences between a DW and a PW are significant and clearly affect the clinical use of these beams. The data presented may be useful for DW commissioning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.