Abstract
The 1515 mining face in Yongming Coal Mine was upward mined across half of the goaf along the panel direction. In this paper, the methods of field measurement, theoretical analysis, and numerical simulation were used to study the overlying rock fracture structure, support load characteristics, and the mechanism of mine pressure behavior across half of the goaf. The results indicate that the support load of the 1515 upward mining face across half of the goaf along the panel direction exhibits distinct zoning characteristics. The maximum support load is 1.37 times the minimum support load. The development height of the roof separation in the up-mining area is 1.74 times that in the entity coal area, at 9.1 m and 5.22 m respectively. The height of separation and hanging roof length increase and decrease, respectively, along the initial rock fracture area, tensile fracture area, structural fracture area, and compacted fracture area. Based on the definition of the variation coefficient “m” for immediate roof height and hanging roof coefficient “n”, a partitioned method for calculating support loads in the upward mining face across half of the goaf was proposed. Finally, the key parameter values for support loads in each zoning were provided and validated.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have