Abstract

Considering that ANSYS software will automatically quit or the computer will freeze when generating random aggregate models of concrete by using some existing methods that are based on the ANSYS parametric design language (APDL), a new method of random aggregate placement using the ESEL command in APDL and the rotation of the local coordinate system is proposed in this paper. According to this method, a multiscale macroscopic and mesoscopic finite element model of the No. 9 non-overflow dam section of Shimantan dam is constructed. In addition, considering that most of the damage models adopted by the existing mesoscale simulation of concrete damage and fracture cannot take into account the interaction between aggregates, interfacial transition zone (ITZ), and mortar, an improved anisotropic temperature damage model is proposed in this paper. The aggregate placement simulation results show that the method presented in this paper can quickly generate two-dimensional (2D) random concrete aggregates, and the generation of three-dimensional (3D) aggregates can also be completed in a very short time, which can greatly improve the aggregate generation efficiency. Moreover, the aggregate shape generated by this method is very close to the real concrete aggregate shape. The crack propagation simulation results show that the sudden rise and fall of temperature can cause damage in the mortar and ITZ of concrete inside the dam body, which is the main reason for the generation of macroscopic through-cracks in the No. 9 non-overflow dam section of Shimantan dam during the operation period. Finally, it can be learned from the results that the method presented in this paper is reasonable and feasible, and can be extended to the crack propagation simulation of some other concrete gravity and arch dams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.