Abstract

A new method for the approximation of the explicit probability of entrainment for individual coarse particles is presented. The method is based on the derivation of inertial acceleration measurements, space-state approximation of the dynamics close to entrainment, and the probabilistic approximation of the threshold inertial acceleration that causes incipient motion. Results from flume experiments with a custom-made inertial measurement unit enclosed in an idealized spherical enclosure, under varied flow conditions (achieved through slope change) and two different arrangements (saddle and grain-top positions) are presented to demonstrate the application of the method. The analysis supports the modification of the existing flow velocity–based entrainment criteria so they respect the particle-frame realization of forces during incipient motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.