Abstract

Small diameter gravity sewers (SDGS) have been applied in rural areas to collect sewage or greywater. Flow conditions in rural SDGS are variable and their influences on bacteria in sewer biofilms are still not clear. To investigate the effect of flow conditions on sewage and greywater SDGS biofilms, six sewage SDGS and six greywater SDGS were operated and Illumina HiSeq sequencing was subsequently performed on sewer biofilms. The results indicate that the predominant bacterial phyla in both sewage and greywater SDGS biofilms were Proteobacteria (63.0% ± 9.3%) and Actinobacteria (26.5% ± 8.8%) and co-presence relationship was the main interaction in SDGS biofilm bacterial communities. Compared with stable flow conditions, variable flow conditions altered the bacterial community of SDGS biofilms from the aspect of bacteria compositions and community interactions and the relative abundance of many bacteria showed significant distinctions between stable and variable flow conditions. In sewage SDGS biofilm, the relative abundance of denitrifying, nitrite-oxidizing, and sulfate-reducing bacteria decreased significantly in variable flow conditions while in greywater SDGS biofilms, nitrite-oxidizing and water-related pathogenic bacteria decreased significantly in variable flow conditions. Influences of flow conditions on predicted bacterial functions were also significant in sewage and greywater SDGS biofilms. Variable flow conditions might be conducive to the reduction of H2S generation and water-related pathogenic bacteria in rural SDGS biofilms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call