Abstract

Developmental dyscalculia (DD) is a subtype of learning disabilities, which is characterized by lower mathematical skills despite average intelligence and average or satisfactory performance in other academic areas. It is not fully understood how such deficits emerge in the course of brain development. When considering the mechanisms of dyscalculia, two domain-specific systems are distinguished. The Approximate Number System (ANS) is related to the approximate estimation of large sets, and the Object Tracking System (OTS) is responsible for subitizing, that is, the exact quantification of small sets. In recent years, the multiple-deficit framework has become increasingly popular. On the one hand, it explains the impairment of certain general cognitive functions in children with DD, such as executive functions, attention, visual-perceptual discrimination, processing speed, and rapid scanning of visual information. On the other hand, it provides a theoretical basis for explaining the simultaneous occurrence of the different types of other comorbid conditions (such as dyslexia and ADHD) and the relationship between them. We suggest that the face recognition could be considered as another, probably impaired function in dyscalculic individuals. We highlight several brain areas involved both in numerical and facial processing: intraparietal sulcus (IPS), fusiform gyrus (FFG), and hippocampus (HC). We consider the possibility of expanding the scope of dyscalculia research by application of face perception paradigms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call