Abstract

Developmental dyscalculia (DD) is a specific learning disability affecting the acquisition of school-level mathematical abilities in the context of otherwise normal academic achievement, with prevalence estimates in the order of 3-6%. Behavioural studies show deficits in elementary numerical processing among individuals with pure DD, indicating that deficits in higher-level mathematical skills may stem from impaired representation and processing of basic numerical magnitude. Adult neuropsychological and neuroimaging research points to the intraparietal sulcus as a key region for the representation and processing of numerical magnitude. This raises the possibility of a parietal dysfunction as a root cause of DD. We show that, in children with pure DD, the right intraparietal sulcus is not modulated in response to numerical processing demands to the same degree as in typically developing children. This finding provides the first direct evidence for a specific impairment of parietal magnitude systems in DD during non-symbolic numerosity processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.