Abstract
The matrix that transforms the response variable in a regression to its predicted value is commonly referred to as the hat matrix. The trace of the hat matrix is a standard metric for calculating degrees of freedom. The two prominent theoretical frameworks for studying hat matrices to calculate degrees of freedom in local polynomial regressions – ANOVA and non-ANOVA – abstract from both mixed data and the potential presence of irrelevant covariates, both of which dominate empirical applications. In the multivariate local polynomial setup with a mix of continuous and discrete covariates, which include some irrelevant covariates, we formulate asymptotic expressions for the trace of both the non-ANOVA and ANOVA-based hat matrices from the estimator of the unknown conditional mean. The asymptotic expression of the trace of the non-ANOVA hat matrix associated with the conditional mean estimator is equal up to a linear combination of kernel-dependent constants to that of the ANOVA-based hat matrix. Additionally, we document that the trace of the ANOVA-based hat matrix converges to 0 in any setting where the bandwidths diverge. This attrition outcome can occur in the presence of irrelevant continuous covariates or it can arise when the underlying data generating process is in fact of polynomial order.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.