Abstract

Oxy-fuel combustion is one method to produce concentrated streams of carbon dioxide for subsequent sequestration. An additional benefit of oxy-firing is a reduction in NOx formation. The high combustion temperatures resulting from oxy-firing are typically controlled by exhaust gas recirculation. In this work, we performed chemical kinetic (CHEMKIN) calculations using a mechanism validated for these conditions to study the effects of dilution by either carbon dioxide or water vapor on methane oxy-combustion, and to compare the results with methane air-combustion (N2 as the diluent). The study was performed under adiabatic conditions at a pressure of P = 30 atm, an equivalence ratio of φ = 1, and initial temperatures of T = 800–1200 K, which mimic the inlet conditions of many gas turbines and flameless combustors. The calculations show that H2O addition at low initial temperatures and high pressure leads to considerable reduction in the ignition delay time. This result is mainly due to changes in the radica...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.