Abstract

Abstract During greening, excised etiolated barley leaves and cucumber cotyledons that were depleted of exogenous Ca2+ by a chelating agent (ethylene glycol-bis (beta aminoethyl ether)-N,N,N`N`-tetraacetic acid, EGTA) showed ∼50% reduced chlorophyll (Chl) accumulation and ∼30% accumulation of apoprotein of the light-harvesting chlorophyll a/b-binding protein complex of photosystem II (LHCPII). The Ca2+ channel blocker lanthanum chloride (LaCl3) applied to cucumber cotyledons reduced LHCPII accumulation more than EGTA did. In both plant mate-rials, cytokinins enhanced chlorophyll accumulation by 50-60% and this effect was completely canceled by EGTA application. Hormones significantly increased LHCPII accumulation but EGTA application reduced that effect in barley leaves by ∼30% and in cucumber cotyledons by ∼80%. A similar effect was observed in LaCl3-treated cotyledons. CaCl2 application boosted chlorophyll accumulation in both plant materials. CaCl2 applied together with cytokinin reduced the hormonal effect on chlorophyll accumulation by ∼38% in barley leaves and 23% in cucumber cotyledons, but almost totally inhibited cytokinin-stimulated LHCPII accumulation. Our results indicate that calcium variously mediates the effect of cytokinin on chlorophyll and LHCPII accumulation. Cytokinin-induced enhancement of chlorophyll accumulation seems totally dependent on the exogenous pool of Ca2+, while Ca2+-dependent and Ca2+-independent pathways are involved in the hormonal effect on LHCPII accumulation. The effect of cytokinin on the increase of light-induced LHCPII accumulation appears to be sensitive to exogenously applied Ca2+, which almost totally blocked the hormonal effect. Our results give indirect evidence that the responses to cytokinin and light act on different events leading to Chl and LHCPII accumulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.