Abstract

PTEN (Phosphatase and TENsin homolog) is a well-known tumor suppressor involved in numerous types of cancer, including T-cell acute lymphoblastic leukemia (T-ALL). In human, loss-of-function mutations of PTEN are correlated to mature T-ALL expressing a T-cell receptor (TCR) at their cell surface. In accordance with human T-ALL, inactivation of Pten gene in mouse thymocytes induces TCRαβ+ T-ALL development. Herein, we explored the functional interaction between TCRαβ signaling and PTEN. First, we performed single-cell RNA sequencing (scRNAseq) of PTEN-deficient and PTEN-proficient thymocytes. Bioinformatic analysis of our scRNAseq data showed that pathological Ptendel thymocytes express, as expected, Myc transcript, whereas inference of pathway activity revealed that these Ptendel thymocytes display a lower calcium pathway activity score compared to their physiological counterparts. We confirmed this result using ex vivo calcium flux assay and showed that upon TCR activation tumor Ptendel blasts were unable to release calcium ions (Ca2+) from the endoplasmic reticulum to the cytosol. In order to understand such phenomena, we constructed a mathematical model centered on the mechanisms controlling the calcium flux, integrating TCR signal strength and PTEN interactions. This qualitative model displays a dynamical behavior coherent with the dynamics reported in the literature, it also predicts that PTEN affects positively IP3 (inositol 1,4,5-trisphosphate) receptors (ITPR). Hence, we analyzed Itpr expression and unraveled that ITPR proteins levels are reduced in PTEN-deficient tumor cells compared to physiological and leukemic PTEN-proficient cells. However, calcium flux and ITPR proteins expression are not defective in non-leukemic PTEN-deficient T cells indicating that beyond PTEN loss an additional alteration is required. Altogether, our study shows that ITPR/Calcium flux is a part of the oncogenic landscape shaped by PTEN loss and pinpoints a putative role of PTEN in the regulation of ITPR proteins in thymocytes, which remains to be characterized.

Highlights

  • T-cell acute lymphoblastic leukemia (T-ALL) is a malignant proliferation of T cell progenitors

  • We showed that a fit TCRab signaling prevents T-ALL development of PTEN-deficient thymocytes while thymocytes harboring unfit T-cell receptor (TCR) are selected for leukemogenesis

  • PTEN-deficient T-ALL account for 15-20% of T-ALL cases and are usually associated with mature TCRab+ subgroup [2, 36]

Read more

Summary

Introduction

T-cell acute lymphoblastic leukemia (T-ALL) is a malignant proliferation of T cell progenitors. T-ALL represents 10-15% of pediatric and 20-25% of adult cases of ALL [1]. This disease is a result from multiple genetic alterations affecting oncogenes and tumor suppressor genes. Loss-of-function mutations of PTEN (Phosphatase and TENsin homolog) are recurrently observed [2]. PTEN is a phosphatase which dephosphorylates phosphatidylinositol [3,4,5]-triphosphate (PIP3) into PIP2. PTEN antagonizes the function of Phosphatidylinositol 3 kinase (PI3K) and is the main negative regulator of PI3K/AKT signaling pathway. PTEN gene is a wellknown tumor suppressor involved in numerous types of cancer [3]. In accordance with human T-ALL, the deletion of Pten gene in mouse thymocytes induces TCRab+ T-ALL development [6,7,8]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call