Abstract

The class I myosin Myo1c is a mediator of adaptation of mechanoelectrical transduction in the stereocilia of the inner ear. Adaptation, which is strongly affected by Ca(2+), permits hair cells under prolonged stimuli to remain sensitive to new stimuli. Using a Myo1c fragment (motor domain and one IQ domain with associated calmodulin), with biochemical and kinetic properties similar to those of the native molecule, we have performed a thorough analysis of the biochemical cross-bridge cycle. We show that, although the steady-state ATPase activity shows little calcium sensitivity, individual molecular events of the cross-bridge cycle are calcium-sensitive. Of significance is a 7-fold inhibition of the ATP hydrolysis step and a 10-fold acceleration of ADP release in calcium. These changes result in an acceleration of detachment of the cross-bridge and a lengthening of the lifetime of the detached M-ATP state. These data support a model in which slipping adaptation, which reduces tip-link tension and allows the transduction channels to close after an excitatory stimulus, is mediated by Myo1c and modulated by the calcium transient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call