Abstract
Literature data on the effect of calcium on biofilm structures induced a preliminary study. The effect of calcium removal by water softening (<1.0 mg Ca2+.L−1) under real-world drinking water conditions on biofilm formation was studied in a pilot plant with reverse osmosis (RO) membranes and in a laboratory-scale biofilm production unit (BPU) with plasticized polyvinyl chloride (PVC-P) and glass as substratum. The results showed a halving of the exponential biofouling rate in the RO membrane and also a halving of the exponential carbohydrate (CH) production rate in the biofilm on PVC-P and glass in the BPU by softening of the water. In PVC-P biofilms, softening did not affect adenosine tri-phosphate (ATP) production and bacterial species composition (terminal restriction fragment length polymorphism analysis). At low substrate concentrations in glass and RO membrane biofilms softening reduced significantly ATP and CH production and changed the species composition on the membrane. The importance of the two hypothesized physical or physiological mechanisms as causes for the observed Ca2+ effect on biofilm formation and the effect of Ca2+ concentration on those, needs further studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.