Abstract
Long-term fixation of metallic dental and medical implants in bony tissues continues to be a problem. One possible solution involves the application of calcium phosphate (Ca-P) ceramic coatings such as hydroxyapatite (HA) onto the metallic devices. Two methods being investigated for producing the coatings include plasma spraying, a commercially available process, and ion-beam sputter deposition, a technique being experimentally investigated. The plasma spraying process produces coatings on the order of 40–60 μm thick. The chemistry and structure of the coatings are similar to those of HA; however, the plasma spraying process will result in the formation of amorphous and other Ca-P phases in the resulting coatings. One concern with respect to these coatings is their relatively low bond strength. The ion-beam sputtering process produces thin (0.6–1 μm) Ca-P coatings that have a significantly higher bond strength than the plasma-sprayed coatings. One concern with the sputtered coatings relates to the amorphous structure obtained after sputtering. These amorphous coatings have high dissolution rates, and a post-deposition heat treatment is required to form more stable crystalline phases in the coatings. The chemistry and structure of the heat-treated coatings are again similar to those of HA; however, other phases can result from this process as well. Both deposition processes result in the formation of HA-type coatings; however, optimization of various coating properties such as stability and bond strength remain a challenge which must be addressed before an optimal tissue response can be attained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.