Abstract
Abstract The article presents research on the synthesis and characterization of a nanocomposite material consisting of graphene oxide (GO) decorated with calcium oxide (CaO), for the use in energy storage. The co-precipitation method was used to prepare the nanocomposite. The presence of CaO and GO in the sample was confirmed by X-ray diffraction (XRD), which revealed a crystallite size of 18 nm for CaO and 9 nm of CaO/GO. The scanning electron microscopy (SEM) images showed a well-dispersed nanocomposite structure, and energy-dispersive X-ray spectroscopy (EDX) confirmed the presence of Ca, C, and O elements in the sample. Fourier-transform infrared (FTIR) spectroscopy was used to analyze the chemical composition and structural properties of the nanocomposite. UV-visible spectroscopy revealed a direct band gap of 3.78 eV for the nanocomposite, indicating its potential application for use in electrochemical energy storage and photoconductive devices. Zeta potential measurement indicated good physical stability of the nanocomposite. These results suggest that the CaO/GO nanocomposite has promising properties for various technological applications, particularly in the field of thermal energy storage.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have