Abstract

In order to study solid base catalyst for biodiesel production with environmental benignity, transesterification of edible soybean oil with refluxing methanol was carried out in the presence of calcium oxide (CaO), -hydroxide (Ca(OH)2), or -carbonate (CaCO3). At 1 h of reaction time, yield of FAME was 93% for CaO, 12% for Ca(OH)2, and 0% for CaCO3. Under the same reacting condition, sodium hydroxide with the homogeneous catalysis brought about the complete conversion into FAME. Also, CaO was used for the further tests transesterifying waste cooking oil (WCO) with acid value of 5.1 mg-KOH/g. The yield of FAME was above 99% at 2 h of reaction time, but a portion of catalyst changed into calcium soap by reacting with free fatty acids included in WCO at initial stage of the transesterification. Owing to the neutralizing reaction of the catalyst, concentration of calcium in FAME increased from 187 ppm to 3065 ppm. By processing WCO at reflux of methanol in the presence of cation-exchange resin, only the free fatty acids could be converted into FAME. The transesterification of the processed WCO with acid value of 0.3 mg-KOH/g resulted in the production of FAME including calcium of 565 ppm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.