Abstract

The effect of in vitro dilution of artificial urine or human urine on the crystallization of calcium oxalate was examined in a mixed suspension, mixed product removal crystallization system. Direct growth inhibition by components of artificial urine was not significant and supersaturation was the dominant factor in determining crystal nucleation and growth rates. Dilution of human urine caused a decrease in crystal growth rate that was independent of the input calcium and oxalate concentrations, suggesting that dilution of growth inhibitors could be physiologically more important than any reduction in supersaturation. This loss of growth inhibition was counteracted by a reduction in nucleation promotion, with the net effect that the mass of crystals declined. Correlation of crystallization measurements with urinary concentration (osmotic pressure) confirmed these observations, with a negative relationship for growth rate and a positive relationship for nucleation rate and suspension density. Increasing the concentration of urine shifts the crystallization balance from low nucleation/high growth to high nucleation/low growth. Calcium oxalate crystalluria in healthy urine is therefore less likely at early stages of urine development in the nephron and the likelihood can be further reduced by increased fluid output. Our results suggest that lowering the heterogeneous nucleation activity by dilution is more than sufficient to override the loss of growth inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.