Abstract

Transient outward currents were studied in neurons in the visceral ganglion of Aplysia californica, using intracellular perfusion and voltage-clamp techniques. The early outward currents in response to depolarizations from holding potentials near -90 mV were activated in the range -60 to -20 mV, below the threshold for the delayed outward current. Resting inactivation of the early outward currents was removed by prehyperpolarizations in the range -130 to -70 mV. A-currents produced in this manner were blocked by external application of CoCl2 and augmented by increasing external Ca-concentration. They were also blocked by treatment with 4-aminopyridine. The currents were reduced by treatment with verapamil hydrochloride, further suggesting a role for calcium in the current-generating mechanism. A model with a fourth-power activation process and first-power inactivation process could fit the early outward currents reasonably well. The effect of application of Ca-free, cobalt-containing solution was modeled as a decrease in peak conductance and an increase in the time constants of activation and inactivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.