Abstract
The increase in intracellular Ca2+ concentration in erythrocytes and platelets results in simultaneous phospholipid scrambling and microvesicle shedding. Microvesicle formation involves membrane fusion events which were proposed either to be tightly linked to phospholipid transversal redistribution or to occur by a separate mechanism. We report here that in erythrocytes incubated in high K+ medium, or in resealed ghosts, phospholipid scrambling can be fully induced by intracellular Ca2+ without microvesicle formation. Furthermore, in ghosts resealed in the presence of spermine, intracellular Ca2+, at low concentration, was able to induce microvesicles, whereas scrambling was drastically inhibited. Surprisingly, in spermine-containing ghosts prepared from erythrocytes of a patient with a bleeding disorder, due to a lack of Ca2+-induced phospholipid scrambling and vesicle shedding (characterized as a Scott syndrome), Ca2+ also promoted microvesicle release. Data show that phospholipid scrambling and microvesicle production, although closely regulated, proceed by independent pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.