Abstract

TMEM16 proteins can operate as Ca2+ -activated Cl- channels or scramble membrane phospholipids, which are both highly relevant mechanisms during disease. Overexpression of TMEM16A and TMEM16F were found to be partially active at 37°C and at resting intracellular Ca2+ concentrations. We show that TMEM16 Cl- currents and phospholipid scrambling can be activated by modification of plasma membrane phospholipids, through reactive oxygen species and phospholipase A2. While phospholipids and Cl- ions are likely to use the same pore within TMEM16F, TMEM16A only conducts Cl- ions. Lipid regulation of TMEM16 proteins is highly relevant during inflammation and regulated cell death such as apoptosis and ferroptosis. TMEM16/anoctamin (ANO) proteins form Ca2+ -activated ion channels or phospholipid scramblases. We found that both TMEM16A/ANO1 and TMEM16F/ANO6 produced Cl- currents when activated by intracellular Ca2+ , but only TMEM16F was able to expose phosphatidylserine to the outer leaflet of the plasma membrane. Mutations within TMEM16F or TMEM16A/F chimeras similarly changed Cl- currents and phospholipid scrambling, suggesting the same intramolecular pathway for Cl- and phospholipids. When overexpressed, TMEM16A and TMEM16F produced spontaneous Cl- currents at 37°C even at resting intracellular Ca2+ levels, which was abolished by inhibition of phospholipase A2 (PLA2 ). Connversely, activation of PLA2 or application of active PLA2 , as well as lipid peroxidation induced by reactive oxygen species (ROS) using staurosporine or tert-butyl hydroperoxide, enhanced ion currents by TMEM16A/F and in addition activated phospholipid scrambling by TMEM16F. Thus, TMEM16 proteins are activated by an increase in intracellular Ca2+ , or independent of intracellular Ca2+ , by modifications occurring in plasma and intracellular membrane phospholipids. These results may help to explain why regions distant to the TMEM16 pore and the Ca2+ binding sites control Cl- currents and phospholipid scrambling. Regulation of TMEM16 proteins through modification of membrane phospholipids occurs during regulated cell death such as apoptosis and ferroptosis. It contributes to inflammatory and nerve injury-induced hypersensitivity and generation of pain and therefore provides a regulatory mechanism that is particularly relevant during disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.