Abstract

HypothesisA combination of acid and iron ions inside the wood has been corroding the cellulose matrix of the Swedish warship Vasa, imposing its deacidification. Past deacidification treatments displayed poor penetration inside the wood matrix with limited efficacy. A vacuum assisted treatment of wood using newly developed calcium hydroxide nanoparticle dispersions represents a possible candidate for the treatment of acidic waterlogged wood objects such as sculptures and decorative artifacts. ExperimentsA solvothermal process was used for the synthesis of calcium hydroxide nanoparticle dispersions. Before the application on waterlogged wood, the physico-chemical characterization of these systems was carried out using several techniques. The efficacy of the deacidification treatment of wood samples from the Vasa was assessed by determination of pH and Differential Thermal Gravimetric (DTG) measurements. FindingsThe proposed solvothermal reactions can be used to produce stable and highly concentrated calcium hydroxide nanoparticle dispersions in alcohols, needing no further purification before the application. This process has also the advantage to be upscalable to industrial level. Both pH and DTG measurements showed that the newly developed dispersions can homogenously penetrate inside the wood up to 20cm, neutralizing acidity and creating an alkaline buffer inside the wooden matrix, to hinder the degradation of residual cellulose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call