Abstract

The leaves of the carnivorous plant Venus flytrap, Dionaea muscipula (Dionaea) close rapidly to capture insect prey. The closure response usually requires two successive mechanical stimuli to sensory hairs on the leaf blade within approximately 30 s (refs. 1-4). An unknown biological system in Dionaea is thought to memorize the first stimulus and transduce the signal from the sensory hair to the leaf blade2. Here, we link signal memory to calcium dynamics using transgenic Dionaea expressing a Ca2+ sensor. Stimulation of a sensory hair caused an increase in cytosolic Ca2+ concentration ([Ca2+]cyt) starting in the sensory hair and spreading to the leaf blade. A second stimulus increased [Ca2+]cyt to an even higher level, meeting a threshold that is correlated to the leaf blade closure. Because [Ca2+]cyt gradually decreased after the first stimulus, the [Ca2+]cyt increase induced by the second stimulus was insufficient to meet the putative threshold for movement after about 30 s. The Ca2+ wave triggered by mechanical stimulation moved an order of magnitude faster than that induced by wounding in petioles of Arabidopsis thaliana5 and Dionaea. The capacity for rapid movement has evolved repeatedly in flowering plants. This study opens a path to investigate the role of Ca2+ in plant movement mechanisms and their evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.