Abstract

The molecular mechanism underlying the role of calcium influx in the regulation of retinal serotonin N-acetyltransferase (NAT) activity was studied in vivo in chickens. Systemic administration of organic antagonists of voltage-sensitive calcium channels (VSCC), i.e., nimodipine and nifedipine, resulted in a marked suppression of the nocturnal increase of NAT activity in chicken retina. In contrast, NAT activity stimulated by nonhydrolysable analogs of cyclic AMP (dibutyryl-cyclic AMP and 8-bromo-cyclic AMP), forskolin, a direct activator of adenylate cyclase, and by phosphodiesterase inhibitors (aminophylline and 3-isobutyl-1-methylxanthine), was not significantly affected by various tested VSCC antagonists. The inhibitory effect of nimodipine on the dark-dependent increase in NAT activity of chicken retina was abolished by Bay K 8644, a selective VSCC agonist. The results presented in this paper indicate an important role of calcium influx through L-type of VSCC in the induction of NAT activity in chicken retina, and suggest that a requirement of calcium ions in the process of NAT induction in the retina may be primarily at the level of cyclic AMP production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.