Abstract

The regulation of serotonin N-acetyltransferase (NAT) activity and cyclic AMP accumulation in the retina of the African clawed frog ( Xenopus laevis ) was studied using an in vitro eye cup preparation. Retinal NAT, a key enzyme in the synthesis of melatonin, is expressed as a circadian rhythm with peak activity at night. The increase of NAT activity at night appears to be mediated by cyclic AMP and is suppressed by light. Dopamine inhibits the nocturnal increase of retinal NAT activity; approximately 80% inhibition was observed with 1 μM dopamine. Dopamine at 1 μM did not stimulate retinal cyclic AMP accumulation. The effect of dopamine on NAT activity was antagonized by the D2-selective receptor antagonists spiperone and metoclopramide, but not by the putative D1 selective antagonist SCH 23390. The nocturnal rise in NAT activity was inhibited by LY 171555, a putative D2 selective agonist, but not by SKF 38393, a putative D1 selective agonist. LY 171555 also decreased cyclic AMP accumulation in eye cups incubated under similar conditions. Dopamine inhibited the stimulation of NAT activity in light by 3-isobutylmethylxanthine, but not that by dibutyryl cyclic AMP, suggesting that dopamine acts by decreasing cyclic AMP formation in the NAT-containing cells. Thus, the effects of dopamine on NAT activity may be mediated by a receptor with the pharmacological and biochemical characteristics of a D2 receptor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call