Abstract

Calcium/calmodulin-dependent protein kinase II (CaMK II) is found throughout the CNS. It regulates calcium signaling in synaptic transmission by phosphorylating various proteins, including neuronal membrane receptors and intracellular transcription factors. Inflammation or injuries to peripheral tissues cause long-lasting increases in the responses of central nociceptive neurons to innocuous and noxious stimuli. This change can occur independently of alterations in the responsiveness of primary afferent neurons and has been termed central sensitization. Central sensitization is a form of activity-dependent plasticity and results from interactions in a set of intracellular signaling pathways, which modulate nociceptive transmission. Here we demonstrate an increased expression and phosphorylation of CaMK II in rat spinal dorsal horn neurons after noxious stimulation by intradermal injection of capsaicin. Local administration of a CaMK II inhibitor in the spinal cord significantly inhibits the enhancement of responses of spinal nociceptive neurons and changes in exploratory behavior evoked by capsaicin injection. In addition, spinal CaMK II activity enhances phosphorylation of AMPA receptor GluR1 subunits during central sensitization produced by capsaicin injection. This study reveals that CaMK II contributes to central sensitization in a manner similar to its role in the processes underlying long-term potentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.