Abstract

Calcium-binding motifs are shared by multiple bacteriophage lysins; however, the influence of calcium on the enzymatic activity and host range of these enzymes is still not understood. To address this, ClyF, a chimeric lysin with a putative calcium-binding motif, was used as a model for in vitro and in vivo investigations. The concentration of calcium bound to ClyF was determined by atomic absorption spectrometry. The influence of calcium on the structure, activity and host range of ClyF was assessed by circular dichroism and time-kill assays. The bactericidal activity of ClyF was evaluated in various sera and a mouse model of Streptococcus agalactiae bacteraemia. ClyF has a highly negatively charged surface around the calcium-binding motif that can bind extra calcium, thereby increasing the avidity of ClyF for the negatively charged bacterial cell wall. In line with this, ClyF exhibited significantly enhanced staphylolytic and streptolytic activity in various sera containing physiological calcium, including human serum, heat-inactivated human serum, mouse serum and rabbit serum. In a mouse model of S. agalactiae bacteraemia, intraperitoneal administration of a single dose of 25 μg/mouse ClyF fully protected the mice from lethal infection. The present data collectively showed that physiological calcium improves the bactericidal activity and host range of ClyF, making it a promising candidate for the treatment of infections caused by multiple staphylococci and streptococci.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call